太阳城娱乐城去大丰收娱乐-3k娱乐城开户-维加斯娱乐城娱乐城的时时彩怎么样

首頁(yè) > 講座預(yù)告 > 正文

講座預(yù)告

首頁(yè) > 講座預(yù)告 > 正文

Strength, ductility, fracture toughness, and fatigue resistance of additively manufactured alloys

發(fā)布時(shí)間 : 2025-11-03 11:05    點(diǎn)擊量:

分享:
2025 11
4 報(bào)告時(shí)間 下午3點(diǎn)-5點(diǎn)
講座類(lèi)型 三拱門(mén)名家講堂


報(bào)告題目:Strength, ductility, fracture toughness, and fatigue resistance of additively manufactured alloys

報(bào)告人:Prof. Upadrasta Ramamurty 新加坡南洋理工大學(xué)校長(zhǎng)講席教授、印度科學(xué)院院士、印度工程院院士和世界科學(xué)院院士

主持人: 王金斌 教授/材料科學(xué)院工程院長(zhǎng)

報(bào)告時(shí)間:2025114日(星期二)下午15:00-17:00

報(bào)告地點(diǎn): 研究生樓A201

 

報(bào)告內(nèi)容:

A detailed understanding of the correlations between the processing, microstructures, and mechanical performance of alloys is a must before they can be deployed for structural applications with a high degree of reliability. Such an understanding, which allows for tailoring of advanced alloys for the targeted performances, is well-established for those manufactured using the conventional route of manufacturing alloys. Moreover, there are several options available for tuning the microstructures in that route. However, some of them—especially microstructural tuning through the judicious selection of the thermo-mechanical processing steps—are not available in additive manufacturing (AM) of metallic components, which offers a number of technological advantages such as near-net shape forming using a single processing step, flexible and on-demand manufacturing, near-zero material loss during fabrication, etc. and hence is being pursued with considerable scientific and technological vigor across the world. However, alloys made with AM techniques such as laser powder bed fusion (LPBF) have substantially finer microstructures (due to rapid solidification) and distinct mesoscale features. Consequently, their strength is often higher while the ductility is lower, vis-à-vis CM alloys. The meso-structural features, a result of the ‘bottom up’ approach of building components—line-by-line and layer-by-layer with in-situ alloying capability—can impart very high fracture toughness to these alloys. The presence of porosity, which is inevitable given that the feedstock is powder, results in lowered unnotched fatigue resistance. Implications of these in terms of possible directions for designing AM alloys with high mechanical performance will be discussed.

 

報(bào)告人簡(jiǎn)介:

Upadrasta Ramamurty 教授,印度科學(xué)院院士、印度工程院院士及世界科學(xué)院院士(TWAS),新加坡南洋理工大學(xué)校長(zhǎng)講席教授,新加坡科技研究局(A*STAR)首席科學(xué)家。

1994年在布朗大學(xué)獲得博士學(xué)位,1994-1997年在加州大學(xué)-圣芭芭拉分校和麻省理工學(xué)院先后從事博士后工作。1997-2018年,先后在新加坡南洋理工大學(xué)和印度科學(xué)理工學(xué)院(班加羅爾)擔(dān)任助理教授、副教授、教授。2018年至今在南洋理工大學(xué)擔(dān)任校長(zhǎng)講席教授。

他的研究方向包括非晶和晶體合金的變形和斷裂行為、增材制造以及納米壓痕技術(shù)的開(kāi)發(fā)和應(yīng)用等。在國(guó)際知名期刊學(xué)術(shù)沙龍380篇論文(h-index=91),引用量超過(guò)30000余次,現(xiàn)任《Acta Materialia》和《Scripta Materialia》編輯。獲Scopus青年科學(xué)家獎(jiǎng)、TWAS獎(jiǎng)、印度政府頒發(fā)的年度冶金學(xué)家獎(jiǎng)、ShantiSwarup Bhatnagar獎(jiǎng)、印度材料研究學(xué)會(huì)先進(jìn)材料CNR Rao講座獎(jiǎng)和中國(guó)科學(xué)院金屬所李薰講座獎(jiǎng)。

 

                          湘潭大學(xué)科技處

                           材料科學(xué)與工程學(xué)院

 

關(guān)閉

友情鏈接:

地址:中國(guó)湖南湘潭  郵編:411105

版權(quán)所有?湘潭大學(xué) (湘ICP備18021862號(hào)-2) 湘教QS3-200505-000059

湘公網(wǎng)安備 43030202001058號(hào)